

Accelerating Vaccine development against COVID-19 GenScript ProBio Plasmid Platform

Confidential and Privileged

CONTENTS

- Vaccines against COVID-19
- GenScript ProBio Plasmid Platform
- Excellent Partner for mRNA vaccine

Therapies in development against COVID-19

Three main groups of therapies

Training the immune system to recognize and combat pathogens by introducing antigens into the body to trigger an immune response for prevention.

Antibody (for treatment)

Passive immunity by blocking parts of the surface of a virion to render its attack ineffective.

Antiviral agent (for treatment)

Block the viruses from entering the cell or inhibit the replication of viruses in cells.

Subtypes of vaccine:

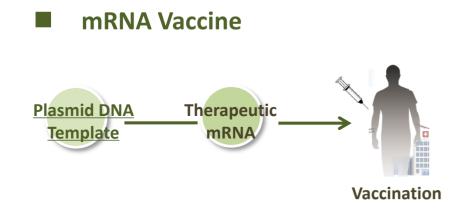
1 Nucleic acid vaccine (Novel)

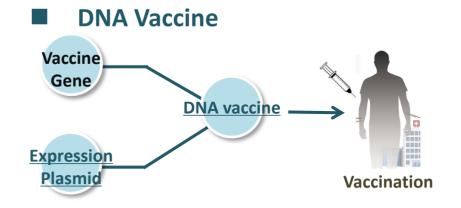
Administration of nucleic acid vaccines results in the endogenous generation of viral proteins that mimic antigen produced during natural viral infection.

moderna BIONTECH inovio

PROBIO

2 Subunit vaccine (conventional)


Presents an antigen to the immune system without viral particles, using a specific, isolated protein of the pathogen, and to stimulate long-lasting protective/therapeutic immune responses.


CanSinoBIO gs

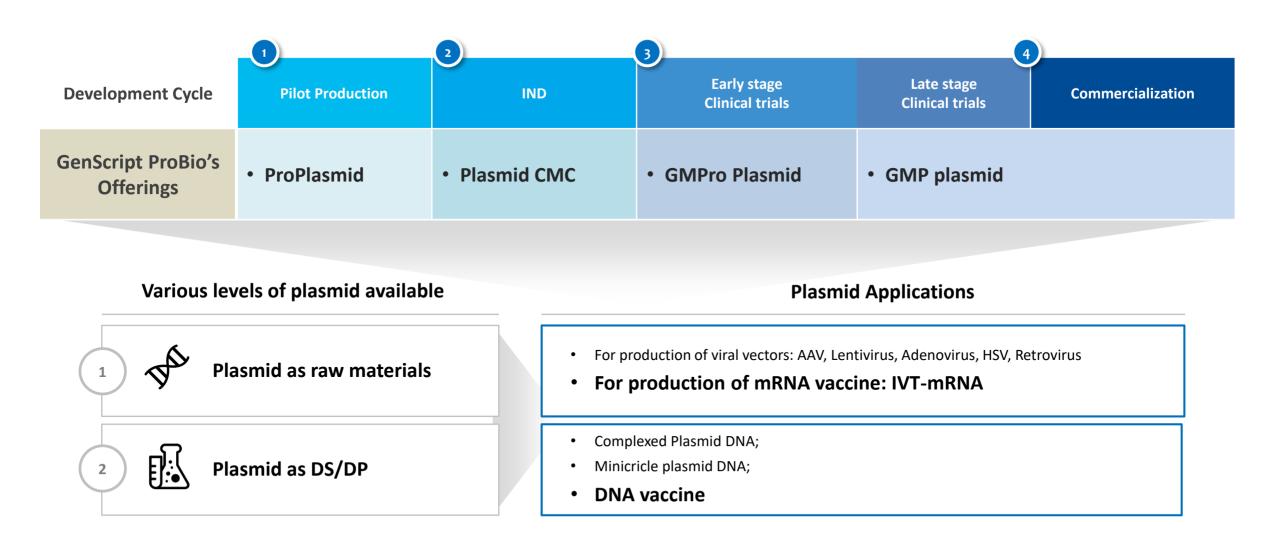
3 Whole virus vaccine (conventional)

Uses the entire virus particle, fully destroyed, and can be recognized by the immune system and evoke an adaptive immune response.

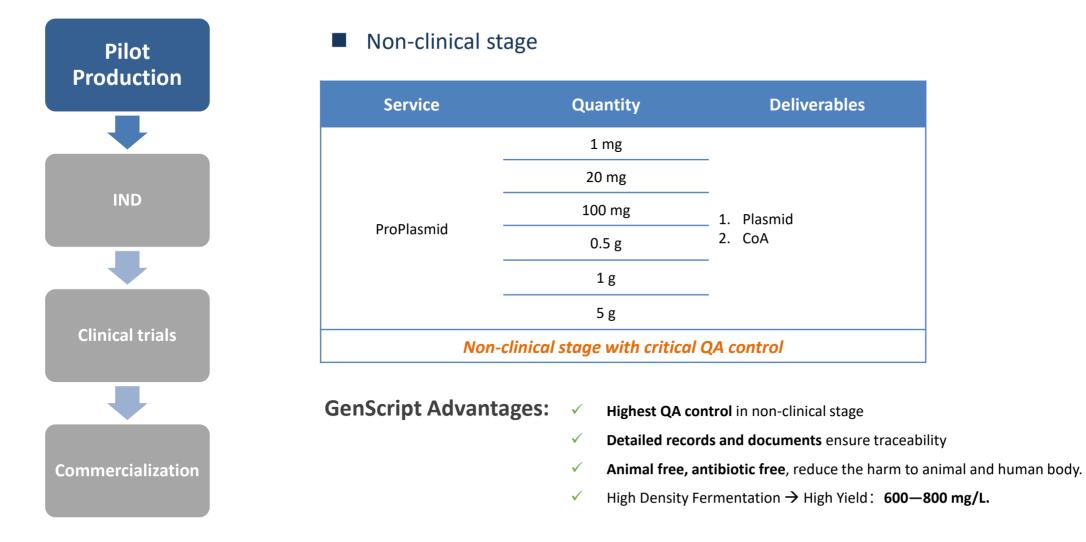
Plasmid in DNA Vaccine and mRNA Vaccine

PROBIO

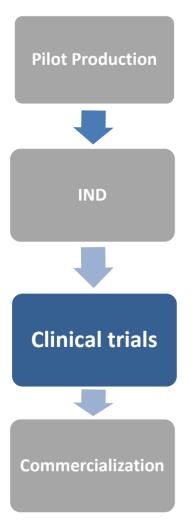
GenScript ProBio supporting plasmid for vaccines


Development Cycle	1 Pilot Production	2 IND	3 Early stage Clinical trials	Late stage Clinical trials Commercialization
GenScript ProBio's Offerings	• ProPlasmid	• Plasmid CMC	• GMPro Plasmid	• GMP plasmid

CONTENTS


- mRNA vaccine against COVID-19
- GenScript ProBio Plasmid Platform
- Excellent Partner for mRNA vaccine

Plasmid Platform at GenScript ProBio



Non-clinical Stage: ProPlasmid Manufacturing

Early Stage Clinical: GMPro Plasmid Manufacturing

Early Stage Clinical

Service	Quantity	Deliverables
	1 mg	
	5mg	
	10mg	
	50mg	1. COA
GMPro plasmid	100 mg	 Plasmid TSE/BSE statement
	0.5 g	4. Mfg. summary report
	1 g	
	2 g	
	5 g	
Applicable for plasm control	nid manufacturing	in clinical phase I with full QA

- Animal free, antibiotic free, reduce the harm to animal and human body.
- ✓ High Density Fermentation \rightarrow High Yield: 600-800 mg/L.
- Manufacturing process compliant to GMP, full record guarantee traceability.

Clinical and Commercial: GMP Plasmid Manufacturing

Pilot Production	Clinical and commercial supply		
	Facility	GMP facility in US	
		Starting from WCB	
IND	Manufacturing	High density fermentation	
		Multiple-step purification	
	QC	11 assays	
Clinical trials	QA	Full QA	
	Application	Clinical phase and commercial supply	
Commercialization			

Experience in manufacturing

Accumulated experience in manufacturing pDNA as DS and DP for late-phase clinical trials

Regulatory Applications

- 17 INDs Filed
- 4 Master Files
- Orphan (#4), Fast Track (#2), QIDP⁴⁾ (#1)

GMP Inspections

- CaFDB¹⁾ for commercial-scale
- Vaccine Research Center (VRC, NIH)
- DAIDS, NIH
- IPPOX & P5 (Gates Foundation)
- Sanofi³⁾
- Astellas³⁾

Note: 1) CaFDB: California Food and Drug Branch; 2) VRC: Vaccine Research Center; 3) including QP inspection for EU; 4) QIDP: Qualified Infectious Disease Product.

Advantages in GMP Plasmid Manufacturing

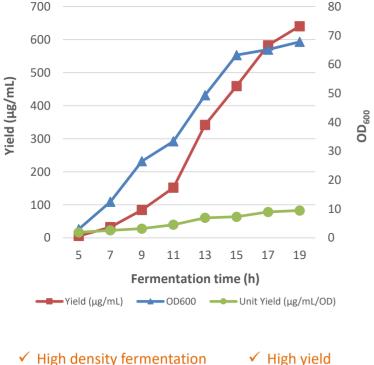
Accumulated experience in manufacturing pDNA as DS and DP for late-phase clinical trials

Extensive knowledge and expertise in fermentation and purification processes

Guaranteed GMP quality via expertise and best practices acquired from Vical

Active investment for reinforcing inhouse capabilities and ensuring cutting-edge systems

Experience in manufacturing DNA Vaccines*	Regulatory Applications*	GMP Inspections*
 CMV vaccine for transplant recipients CMV vaccine as a prophylaxis H5N1 pandemic influenza H1N1 pandemic influenza Anthrax (prophylaxis) HSV-2 (therapeutic) 	 17 INDs Filed 4 Master Files Orphan (#4), Fast Track (#2), QIDP⁴⁾ (#1) 	 CaFDB¹⁾ for commercial-scale Vaccine Research Center (VRC, NIH) DAIDS, NIH IPPOX & P5 (Gates Foundation) Sanofi³⁾ Astellas³⁾

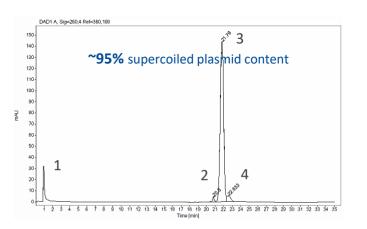

Note: 1) CaFDB: California Food and Drug Branch; 2) VRC: Vaccine Research Center; 3) including QP inspection for EU; 4) QIDP: Qualified Infectious Disease Product

* Experiences in manufacturing, regulatory applications and GMP inspections are based on Vical's experts, who are now employed by Genopis. Genopis acquired Vical's key professionals as well as manufacturing assets and supporting utilities in July 2018.

Case Studies – Plasmid Manufacturing Process

Fermentation Process

Increase of yield, OD₆₀₀ by the change of fermentation time


Purification Process

3 4 5 M2 M1 1 2 11849 10000 10085 6000 8023 5000 4000 6133 3000 5026 2000 3997 1000 3049 500 2087

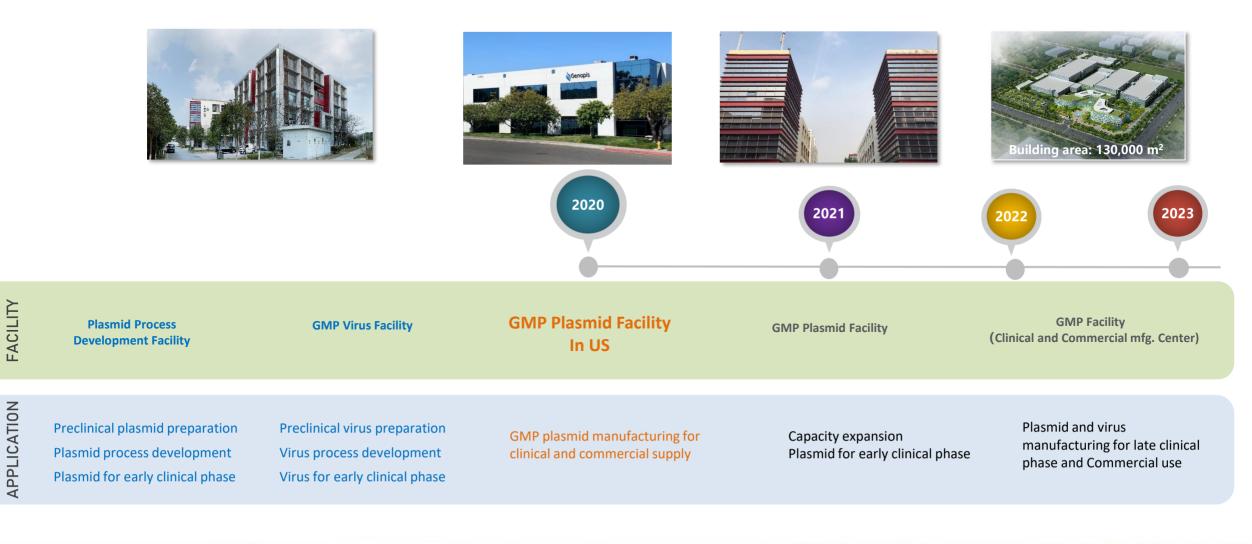
Agarose gel electrophoresis (AGE): obvious decrease of RNA content through 1st purification step.

M1: Supercoiled DNA Ladder MarkerM2: 1 kb DNA Ladder Marker1: Lysate4: Waste of salt elution2: Sample after 1st step5: Waste of water elution3: Waste of salt elutionR: RNA bands

QC Release

Sample	Time	Area (%)
OC-Plasmid	20.800	1.62
SC-Plasmid	21.790	94.07
dimer-Plasmid	22.533	4.31

HPCL: After the 2nd purification step, the content of supercoiled plasmid has already reached 95%


Solvent; 2: Open circular plasmid;
 Supercoiled plasmid; 4: Dimer plasmid

CONTENTS

- mRNA vaccine against COVID-19
- GenScript ProBio Plasmid Platform
- **Excellent Partner for Vaccines**

Facility Construction Plan for Consistent Support: from Early Research to Commercial

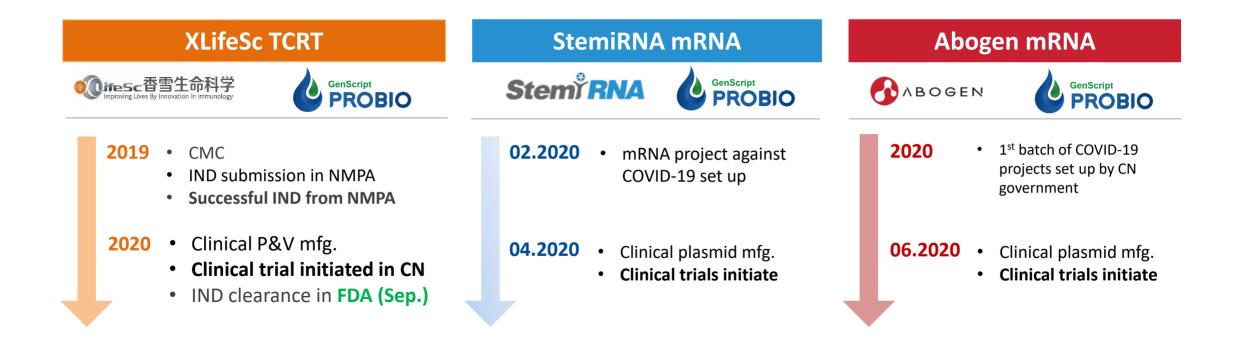
Global Partnerships and Solid Track Record

~60 Plasmid & Virus CMC & Clinical GMP Projects

- Over **10** P&V CMC projects
- Over **30** plasmid mfg. batches
- Over **20** lentivirus mfg. batches
- Plasmid CMC and mfg. for 4 mRNA vaccine

Key Accounts:

 Provide plasmid and lentiviral vector for >30 big pharma and leading biotech



Provide plasmid for 3 leading vaccine company
 VBI VACCINES Stem RNA

Milestones: from IND to GMP mfg., from China to globe, from NMPA to FDA, from drug product to vaccine

2002-2017	2017-2018		2019-2020	
1 st plasmid process development facility in CN	1 st plasmid IND for CAR-T got approval from NMPA	1 st P&LVV IND for TCR-T got approval from NMPA	1 st P&LVV IND for TCR-T got approval from FDA	1 st Plasmid CMC for mRNA Vaccine got approval from NMPA
•	•	•	1 st P&LVV mfg. for clinical use for TCR-T	1 st P&V CMC project from <u>Korea</u> >20 P&LVV mfg. for US customer

Successful Collaborations in Various Projects

The Basics of mRNA Vaccine

Mechanism of mRNA vaccine

Induce the production of antibodies which will bind to potential pathogens.

Delivery of the vaccine into the body.

Encoded sequence is translated by the host cells to produce the antigens.

The antigens stimulate the body's adaptive immune system to produce antibodies against the pathogen.

Production of mRNA vaccine

Produced by *in vitro* reactions with recombinant enzymes, ribonucleotide triphosphates (NTPs) and a **plasmid DNA template**.

mRNA Synthesis	 <u>Template plasmid DNA</u> produced in <i>Escherichia coli</i>, and is linearized using a restriction enzyme; mRNA is synthesized from NTPs by a DNA-dependent RNA polymerase from bacteriophage; Template plasmid DNA is degraded by incubation with DNase; mRNA is enzymatically or chemically capped to enable efficient translation <i>in vivo</i>.
Purification	 Processed though several purification steps to remove reaction components, including enzymes, free nucleotides, residual DNA and truncated RNA fragments; purification at the clinical scale utilizes derivatized microbeads in batch or column formats (easier to utilize at large scale)
Storage	 Exchanged into a final storage buffer and sterile-filtered for subsequent filling into vials for clinical use.

mRNA Vaccine Showing Satisfying Performance

• The use of mRNA has several beneficial features over subunit, killed and live attenuated virus, as well as DNA-based vaccines.

Higher delivery rate than DNA vaccine

DNA is supposed to penetrate nucleus to allow transcription to happen, while translation happens in cytoplasm, where is easier to penetrate.

Faster to manufacture, easier to manufacture in large quantities

Produced by high yields of *in vitro* transcription reactions, potential for rapid, inexpensive and scalable manufacturing.

Higher Safety and efficacy

- Manufacturing process does not involve toxic chemicals or cell culture, avoid adventitious viruses;
- 2. Short manufacturing time presents few opportunities to introduce contaminating microorganisms.

THANK YOU!

0

www.genscriptprobio.com